منابع مشابه
Julia Sets of Perturbed Quadratic Maps Converging to the Filled Basilica
In this paper we investigate singularly perturbed complex quadratic polynomial maps of the form Fλ(z) = z 2 − 1 + λ z2 . We prove that for parameter values λ ∈ R as λ → 0 the Julia set of Fλ(z) converges to the filled basilica when λ 6= 0.
متن کاملbiaccessibility in quadratic julia sets
در این رساله برای چندجمله ای های درجه ی دوم با مجموعه ی ژولیای همبند موضعی; ثابت خواهیم کرد: اندازه برولین مجموعه نقاط از دو سو دست یافتنی در چندجمله ای های درجه دو برابر با صفر است مگر چندجمله ای چبی شف که برابر با یک است. و برای چندجمله ای های درجه دوم با نقاط ثابت خنثی غیر گویا ثابت خواهیم کرد: 1)هر نقطه ی از دو سو دست یافتنی در حالت زیگل نهایتا به نقطه ی بحرانی و در حالت کرمر به نقطه ث...
Translation Invariant Julia Sets
We show that if the Julia set J(f) of a rational function f is invariant under translation by one and infinity is a periodic or preperiodic point for f , then J(f) must either be a line or the Riemann sphere.
متن کاملComputability of Julia Sets
In this paper we settle most of the open questions on algorithmic computability of Julia sets. In particular, we present an algorithm for constructing quadratics whose Julia sets are uncomputable. We also show that a filled Julia set of a polynomial is always computable.
متن کاملCubic Superior Julia Sets
Bodil Branner and John Hubbard produced the first extensive study of iterated complex maps for cubic polynomials in Picard orbit [Acta Math., 160(3-4):1988, 143-206]. Since then few researchers worked on Julia sets for cubic polynomials. In 2004, Rani and Kumar [J. Korea Soc. Math. Educ. Ser. D; Research in Math. Educ., 8(4):2004, 261-277] studied cubic polynomials in superior orbit and gave im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2007
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-07-09084-3